Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.

Identifieur interne : 000723 ( Main/Exploration ); précédent : 000722; suivant : 000724

Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.

Auteurs : Chun-An Chen [États-Unis] ; Francesco De Pascali ; Ariel Basye ; Craig Hemann ; Jay L. Zweier

Source :

RBID : pubmed:23977830

Descripteurs français

English descriptors

Abstract

S-Glutathionylation is a redox-regulated modification that uncouples endothelial nitric oxide synthase (eNOS), switching its function from nitric oxide (NO) synthesis to (•)O2(-) generation, and serves to regulate vascular function. While in vitro or in vivo eNOS S-glutathionylation with modification of Cys689 and Cys908 of its reductase domain is triggered by high levels of glutathione disulfide (GSSG) or oxidative thiyl radical formation, it remains unclear how this process may be reversed. Glutaredoxin-1 (Grx1), a cytosolic and glutathione-dependent enzyme, can reverse protein S-glutathionylation; however, its role in regulating eNOS S-glutathionylation remains unknown. We demonstrate that Grx1 in the presence of glutathione (GSH) (1 mM) reverses GSSG-mediated eNOS S-glutathionylation with restoration of NO synthase activity. Because Grx1 also catalyzes protein S-glutathionylation with an increased [GSSG]/[GSH] ratio, we measured its effect on eNOS S-glutathionylation when the [GSSG]/[GSH] ratio was >0.2, which can occur in cells and tissues under oxidative stress, and observed an increased level of eNOS S-glutathionylation with a marked decrease in eNOS activity without uncoupling. This eNOS S-glutathionylation was reversed with a decrease in the [GSSG]/[GSH] ratio to <0.1. Liquid chromatography and tandem mass spectrometry identified a new site of eNOS S-glutathionylation by Grx1 at Cys382, on the surface of the oxygenase domain, without modification of Cys689 or Cys908, each of which is buried within the reductase. Furthermore, Grx1 was demonstrated to be a protein partner of eNOS in vitro and in normal endothelial cells, supporting its role in eNOS redox regulation. In endothelial cells, Grx1 inhibition or gene silencing increased the level of eNOS S-glutathionylation and decreased the level of cellular NO generation. Thus, Grx1 can exert an important role in the redox regulation of eNOS in cells.

DOI: 10.1021/bi400404s
PubMed: 23977830
PubMed Central: PMC3813969


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.</title>
<author>
<name sortKey="Chen, Chun An" sort="Chen, Chun An" uniqKey="Chen C" first="Chun-An" last="Chen">Chun-An Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Emergency Medicine and ‡Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Emergency Medicine and ‡Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Pascali, Francesco" sort="De Pascali, Francesco" uniqKey="De Pascali F" first="Francesco" last="De Pascali">Francesco De Pascali</name>
</author>
<author>
<name sortKey="Basye, Ariel" sort="Basye, Ariel" uniqKey="Basye A" first="Ariel" last="Basye">Ariel Basye</name>
</author>
<author>
<name sortKey="Hemann, Craig" sort="Hemann, Craig" uniqKey="Hemann C" first="Craig" last="Hemann">Craig Hemann</name>
</author>
<author>
<name sortKey="Zweier, Jay L" sort="Zweier, Jay L" uniqKey="Zweier J" first="Jay L" last="Zweier">Jay L. Zweier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23977830</idno>
<idno type="pmid">23977830</idno>
<idno type="doi">10.1021/bi400404s</idno>
<idno type="pmc">PMC3813969</idno>
<idno type="wicri:Area/Main/Corpus">000710</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000710</idno>
<idno type="wicri:Area/Main/Curation">000710</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000710</idno>
<idno type="wicri:Area/Main/Exploration">000710</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.</title>
<author>
<name sortKey="Chen, Chun An" sort="Chen, Chun An" uniqKey="Chen C" first="Chun-An" last="Chen">Chun-An Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Emergency Medicine and ‡Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Emergency Medicine and ‡Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210</wicri:regionArea>
<wicri:noRegion>Ohio 43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Pascali, Francesco" sort="De Pascali, Francesco" uniqKey="De Pascali F" first="Francesco" last="De Pascali">Francesco De Pascali</name>
</author>
<author>
<name sortKey="Basye, Ariel" sort="Basye, Ariel" uniqKey="Basye A" first="Ariel" last="Basye">Ariel Basye</name>
</author>
<author>
<name sortKey="Hemann, Craig" sort="Hemann, Craig" uniqKey="Hemann C" first="Craig" last="Hemann">Craig Hemann</name>
</author>
<author>
<name sortKey="Zweier, Jay L" sort="Zweier, Jay L" uniqKey="Zweier J" first="Jay L" last="Zweier">Jay L. Zweier</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cadmium (pharmacology)</term>
<term>Cattle (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Endothelium, Vascular (cytology)</term>
<term>Endothelium, Vascular (drug effects)</term>
<term>Gene Silencing (MeSH)</term>
<term>Glutaredoxins (antagonists & inhibitors)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Nitric Oxide Synthase Type III (genetics)</term>
<term>Nitric Oxide Synthase Type III (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Cadmium (pharmacologie)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Endothélium vasculaire (cytologie)</term>
<term>Endothélium vasculaire (effets des médicaments et des substances chimiques)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Glutarédoxines (antagonistes et inhibiteurs)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Nitric oxide synthase type III (génétique)</term>
<term>Nitric oxide synthase type III (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nitric Oxide Synthase Type III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Nitric Oxide Synthase Type III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Endothélium vasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Endothelium, Vascular</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endothelium, Vascular</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Endothélium vasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Nitric oxide synthase type III</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Disulfure de glutathion</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Nitric oxide synthase type III</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Cells, Cultured</term>
<term>Gene Silencing</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Cellules cultivées</term>
<term>Extinction de l'expression des gènes</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">S-Glutathionylation is a redox-regulated modification that uncouples endothelial nitric oxide synthase (eNOS), switching its function from nitric oxide (NO) synthesis to (•)O2(-) generation, and serves to regulate vascular function. While in vitro or in vivo eNOS S-glutathionylation with modification of Cys689 and Cys908 of its reductase domain is triggered by high levels of glutathione disulfide (GSSG) or oxidative thiyl radical formation, it remains unclear how this process may be reversed. Glutaredoxin-1 (Grx1), a cytosolic and glutathione-dependent enzyme, can reverse protein S-glutathionylation; however, its role in regulating eNOS S-glutathionylation remains unknown. We demonstrate that Grx1 in the presence of glutathione (GSH) (1 mM) reverses GSSG-mediated eNOS S-glutathionylation with restoration of NO synthase activity. Because Grx1 also catalyzes protein S-glutathionylation with an increased [GSSG]/[GSH] ratio, we measured its effect on eNOS S-glutathionylation when the [GSSG]/[GSH] ratio was >0.2, which can occur in cells and tissues under oxidative stress, and observed an increased level of eNOS S-glutathionylation with a marked decrease in eNOS activity without uncoupling. This eNOS S-glutathionylation was reversed with a decrease in the [GSSG]/[GSH] ratio to <0.1. Liquid chromatography and tandem mass spectrometry identified a new site of eNOS S-glutathionylation by Grx1 at Cys382, on the surface of the oxygenase domain, without modification of Cys689 or Cys908, each of which is buried within the reductase. Furthermore, Grx1 was demonstrated to be a protein partner of eNOS in vitro and in normal endothelial cells, supporting its role in eNOS redox regulation. In endothelial cells, Grx1 inhibition or gene silencing increased the level of eNOS S-glutathionylation and decreased the level of cellular NO generation. Thus, Grx1 can exert an important role in the redox regulation of eNOS in cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23977830</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.</ArticleTitle>
<Pagination>
<MedlinePgn>6712-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi400404s</ELocationID>
<Abstract>
<AbstractText>S-Glutathionylation is a redox-regulated modification that uncouples endothelial nitric oxide synthase (eNOS), switching its function from nitric oxide (NO) synthesis to (•)O2(-) generation, and serves to regulate vascular function. While in vitro or in vivo eNOS S-glutathionylation with modification of Cys689 and Cys908 of its reductase domain is triggered by high levels of glutathione disulfide (GSSG) or oxidative thiyl radical formation, it remains unclear how this process may be reversed. Glutaredoxin-1 (Grx1), a cytosolic and glutathione-dependent enzyme, can reverse protein S-glutathionylation; however, its role in regulating eNOS S-glutathionylation remains unknown. We demonstrate that Grx1 in the presence of glutathione (GSH) (1 mM) reverses GSSG-mediated eNOS S-glutathionylation with restoration of NO synthase activity. Because Grx1 also catalyzes protein S-glutathionylation with an increased [GSSG]/[GSH] ratio, we measured its effect on eNOS S-glutathionylation when the [GSSG]/[GSH] ratio was >0.2, which can occur in cells and tissues under oxidative stress, and observed an increased level of eNOS S-glutathionylation with a marked decrease in eNOS activity without uncoupling. This eNOS S-glutathionylation was reversed with a decrease in the [GSSG]/[GSH] ratio to <0.1. Liquid chromatography and tandem mass spectrometry identified a new site of eNOS S-glutathionylation by Grx1 at Cys382, on the surface of the oxygenase domain, without modification of Cys689 or Cys908, each of which is buried within the reductase. Furthermore, Grx1 was demonstrated to be a protein partner of eNOS in vitro and in normal endothelial cells, supporting its role in eNOS redox regulation. In endothelial cells, Grx1 inhibition or gene silencing increased the level of eNOS S-glutathionylation and decreased the level of cellular NO generation. Thus, Grx1 can exert an important role in the redox regulation of eNOS in cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Chun-An</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Emergency Medicine and ‡Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Pascali</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Basye</LastName>
<ForeName>Ariel</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hemann</LastName>
<ForeName>Craig</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zweier</LastName>
<ForeName>Jay L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 HL065608</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL65608</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL038324</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 HL103846</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL63744</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K99 HL103846</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL38324</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL063744</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D052250">Nitric Oxide Synthase Type III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052250" MajorTopicYN="N">Nitric Oxide Synthase Type III</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23977830</ArticleId>
<ArticleId IdType="doi">10.1021/bi400404s</ArticleId>
<ArticleId IdType="pmc">PMC3813969</ArticleId>
<ArticleId IdType="mid">NIHMS522473</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(11):e14151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2001 Aug;281(2):H679-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29596-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Congest Heart Fail. 2002 May-Jun;8(3):132-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 25;278(17):14607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Nov 10-16;306(5939):174-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6316142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Mar;84(5):1404-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3029779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jun 16;333(6174):664-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jun 27;351(6329):714-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1712077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1992 Jan;262(1 Pt 2):H23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1733314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Nephrol. 1995 Apr;9(2):235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7794725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 23;374(1):25-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microcirculation. 1996 Mar;3(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Aug 18;237(2):340-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9268712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1997 Nov 1;100(9):2153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9410891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 May 15;14(10):1769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Sep;45(9):1074-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 19;286(33):29098-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21666221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Oct;60(10):2608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):476-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23127894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J. 2013 Nov;34(41):3206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22555214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 2;273(40):25804-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 4;280(9):7540-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2005 Jun;39(6):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2006 Feb 28;71(5):551-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):445-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 8;47(27):7256-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 3;283(40):27038-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 13;49(14):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Basye, Ariel" sort="Basye, Ariel" uniqKey="Basye A" first="Ariel" last="Basye">Ariel Basye</name>
<name sortKey="De Pascali, Francesco" sort="De Pascali, Francesco" uniqKey="De Pascali F" first="Francesco" last="De Pascali">Francesco De Pascali</name>
<name sortKey="Hemann, Craig" sort="Hemann, Craig" uniqKey="Hemann C" first="Craig" last="Hemann">Craig Hemann</name>
<name sortKey="Zweier, Jay L" sort="Zweier, Jay L" uniqKey="Zweier J" first="Jay L" last="Zweier">Jay L. Zweier</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Chen, Chun An" sort="Chen, Chun An" uniqKey="Chen C" first="Chun-An" last="Chen">Chun-An Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000723 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000723 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23977830
   |texte=   Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23977830" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020